========================================
from __future__ import print_function
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
iris = datasets.load_iris()
iris_X = iris.data # (150,4) 有150個資料,每個資料有4個屬性
iris_y = iris.target # (150,) 共有150個結果 對應到 3 種花,用0 1 2 表示
##print(iris_X[:2, :])
##print(iris_y)
X_train, X_test, y_train, y_test = train_test_split(
iris_X, iris_y, test_size=0.3) # 訓練 70% 測試 30%
# x = 輸入 y = 輸出
##print(y_train)
knn = KNeighborsClassifier() # 使用模塊 !!
knn.fit(X_train, y_train) # 學習
print(knn.predict(X_test)) # 預測結果
print(y_test) # 真實結果
========================================
參考
https://morvanzhou.github.io/tutorials/machine-learning/sklearn/2-2-general-pattern/