close

 

=======================

from __future__ import print_function
from sklearn import preprocessing        # 用來 normalization
   
from sklearn.model_selection import train_test_split  
from sklearn.datasets.samples_generator import make_classification  # 製造 Data
from sklearn.svm import SVC             # ML 方法
import matplotlib.pyplot as plt         # 畫圖

 

X, y = make_classification(n_samples=300, n_features=2 , n_redundant=0, n_informative=2,
                           random_state=22, n_clusters_per_class=1, scale=100,n_classes=2)
#  300 組數據 , 每一組數據有兩個 features ,Target => 2 個 (n_classes=2)


plt.scatter(X[:, 0], X[:, 1], c=y)
plt.show()

X = preprocessing.minmax_scale(X,feature_range=(0,1))    # normalization step 壓縮到(0~1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.3)
clf = SVC()              
clf.fit(X_train, y_train)               # ML
print(clf.score(X_test, y_test))        # ML Score 0.9
                                        # 0.4444444444444444  (No normalization)

=======================

參考

https://morvanzhou.github.io/tutorials/machine-learning/sklearn/3-1-normalization/

https://blog.csdn.net/pipisorry/article/details/52247379

https://blog.csdn.net/u013634684/article/details/49646311

 

arrow
arrow
    全站熱搜
    創作者介紹
    創作者 ricky10116r2d2 的頭像
    ricky10116r2d2

    ricky10116r2d2的部落格

    ricky10116r2d2 發表在 痞客邦 留言(0) 人氣()